Как работает реактивный двигатель самолета

Принцип работы реактивного двигателя

Рис. 1. Схема турбореактивного (реактивного) двигателя. 1 – вход воздуха; 2 – компрессор; 3 – камера сгорания; 4 – сопло;  5 – турбина.

В реактивном двигателе (рис. 1) струя воздуха попадает в двигатель, встречается с вращающимися с огромной скоростью турбинами компрессора, который засасывает воздух из внешней среды (с помощью встроенного вентилятора). Таким образом, решаются две задачи – первичный забор воздуха и охлаждение всего двигателя в целом. Лопатки турбин компрессора сжимают воздух примерно в 30 раз и более и «проталкивают» его (нагнетают) в камеру сгорания (генерируется рабочее тело), которая является основной частью любого реактивного двигателя. Камера сгорания выполняет ещё и роль карбюратора, смешивая топливо с воздухом. Это может быть, например, смесь воздуха с керосином, как в турбореактивном двигателе современного реактивного самолёта, или же смесь жидкого кислорода со спиртом, как в некоторых жидкостных ракетных двигателях, или какое-нибудь твёрдое топливо пороховых ракет. После образования топливно-воздушной смеси она поджигается и выделяется энергия в виде теплоты, т. е. топливами реактивных двигателей могут служить лишь такие вещества, которые при химической реакции в двигателе (сгорании) выделяют достаточно много теплоты, а также образуют при этом большое количество газов.

В процессе возгорания происходит значительный разогрев смеси и окружающих деталей, а также объёмное расширение. Фактически реактивный двигатель использует для движения управляемый взрыв. Камера сгорания реактивного двигателя одна из самых горячих его частей (температура в ней достигает 2700°С), её необходимо постоянно интенсивно охлаждать. Реактивный двигатель снабжён соплом, через которое из двигателя наружу с огромной скоростью вытекают раскалённые газы – продукты сгорания топлива в двигателе. В одних двигателях газы попадают в сопло сразу же после камеры сгорания, например в ракетных или прямоточных двигателях. В турбореактивных двигателях газы после камеры сгорания сначала проходят через турбину, которой отдают часть своей тепловой энергии для приведения в движение компрессора, служащего для сжатия воздуха перед камерой сгорания. Но, так или иначе, сопло является последней частью двигателя – через него текут газы, перед тем как покинуть двигатель. Оно формирует непосредственно реактивную струю. В сопло направляется холодный воздух, нагнетаемый компрессором для охлаждения внутренних деталей двигателя. Реактивное сопло может иметь различные формы и конструкцию в зависимости от типа двигателя. Если скорость истечения должна превосходить скорость звука, то соплу придаётся форма расширяющейся трубы или же сначала суживающейся, а затем расширяющейся (сопло Лаваля). Только в трубе такой формы можно разогнать газ до сверхзвуковых скоростей, перешагнуть через «звуковой барьер».

В зависимости от того, используется или нет при работе реактивного двигателя окружающая среда, их подразделяют на два основных класса – воздушно-реактивные двигатели (ВРД) и ракетные двигатели (РД). Все ВРД – тепловые двигатели, рабочее тело которых образуется при реакции окисления горючего вещества кислородом воздуха. Поступающий из атмосферы воздух составляет основную массу рабочего тела ВРД. Т. о., аппарат с ВРД несёт на борту источник энергии (горючее), а бо́льшую часть рабочего тела черпает из окружающей среды. К ним относят турбореактивный двигатель (ТРД), прямоточный воздушно-реактивный двигатель (ПВРД), пульсирующий воздушно-реактивный двигатель (ПуВРД), гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД). В отличие от ВРД все компоненты рабочего тела РД находятся на борту аппарата, оснащённого РД. Отсутствие движителя, взаимодействующего с окружающей средой, и наличие всех компонентов рабочего тела на борту аппарата делают РД пригодным для работы в космосе. Существуют также комбинированные ракетные двигатели, представляющие собой как бы сочетание обоих основных типов.

Запуск импульсной струи [ править ]

Секционный двигатель AS 014 на выставке в Лондонском музее науки

Импульсные реактивные двигатели — необычные силовые установки самолетов. Тем не менее, Argus As 014, который использовался для питания летающей бомбы V-1, и Fieseler Fi 103R Reichenberg был заметным исключением. В этой импульсной струе три воздушных сопла в передней части были подключены к внешнему источнику воздуха высокого давления, для запуска использовался бутан от внешнего источника, зажигание осуществлялось свечой зажигания, расположенной за системой заслонки, при этом на свечу подавалось электричество. питается от переносного пускового устройства.

Как только двигатель запустился и температура поднялась до минимального рабочего уровня, шланг для внешнего воздуха и соединители были сняты, а резонансная конструкция выхлопной трубы поддерживала работу импульсной струи. Каждый цикл или импульс двигателя начинался с открытыми заслонками; топливо было впрыснуто за ними и воспламенилось, и в результате расширение газов заставило заслонки закрыться. Когда после сгорания давление в двигателе упало, заслонки снова открылись, и цикл повторялся примерно от 40 до 45 раз в секунду. Система электрического зажигания использовалась только для запуска двигателя; нагрев обшивки выхлопной трубы поддерживал горение.

Атомный двигатель

В период холодной войны в мире были попытки создания атомного двигателя, за основу был взят турбореактивный двигатель. Главной задумкой ученых было создание двигателя, основанного не на химической реакции радиоактивных веществ, а на вырабатываемом тепле от ядерного реактора. Он должен был находиться на месте камеры сгорания.

В теории воздух должен был проходить через работающую зону реактора, благодаря этому реактор должен был остужаться, а температура воздуха наоборот возрастать. После чело воздух должен был расширяться и выходить через сопла (выхлоп) на этот момент скорость воздуха должна была превышать скорость полета самолета.

В Советском союзе были попытки проведения испытаний подобного двигателя, также ученные в соединенных штатах Америки, вели разработку данного двигателя, и их работа почти подходила к тестам двигателя на настоящем самолете.

Но по ряду причин разработки этого двигателя было решено закрыть. Так как у двигателя было множество недостатков, а именно:

  • Пилоты были подвержены постоянному радиоактивному облучению на протяжении всего полета.
  • Вместе с воздухом через сопла выходили и частички радиоактивного элемента в атмосферу.
  • В том случае если самолет терпел крушение, был очень большой шанс взрыва радиоактивного реактора, что влекло за собой радиоактивное отравление на довольно большой площади.

Впервые самолет с турбореактивным двигателем (ТРД) поднялся в воздух в 1939 году. С тех пор устройство двигателей самолетов совершенствовалось, появились различные виды, но принцип работы у всех них примерно одинаковый. Чтобы понять, почему воздушное судно, имеющий столь большую массу, так легко поднимается в воздух, следует узнать, как работает двигатель самолета. ТРД приводит в движение воздушное судно за счет реактивной тяги. В свою очередь, реактивная тяга является силой отдачи струи газа, которая вылетает из сопла. То есть получается, что турбореактивная установка толкает самолет и всех находящихся в салоне людей с помощью газовой струи. Реактивная струя, вылетая из сопла, отталкивается от воздуха и таким образом, приводит в движение воздушное судно.

Как работает реактивный двигатель?

Тяга — это главный результат работы реактивного двигателя. Чтобы получить тягу, необходимо выпустить воздух из сопла (в основном, из сходящейся части). Чтобы воздух выходил из сопла автоматически, необходимо поддерживать высокое давление на входе в сопло в два этапа. На самом первом этапе компрессор сжимает поступающий воздух, повышая его температуру и давление. Но оно не слишком высокое, что необходимо для создания большой тяги. Для этого существует вторая ступень горения, которая сжигает небольшое количество топлива для сжигания воздуха и увеличивает температуру и объем топлива, оба из которых участвуют в конечном давлении, тем самым поддерживая воздух на входе в сопло. Теперь позвольте мне провести вас шаг за шагом по реактивному двигателю.

Первая ступень — это вход, где атмосфера поступает в двигатель, замедляя скорость и увеличивая давление. Вторая ступень — это компрессор с движущимися лопастями, которые увеличивают давление проходящего через него воздуха. Компрессор имеет решающее значение для работы камеры сгорания. Почему? Как компрессор увеличивает давление воздуха, проходя через движущиеся лопасти? Об этом мы расскажем в другой раз. В настоящее время сжатый воздух поступает в камеру сгорания, где он смешивается с топливом и сгорает при очень высокой температуре. Эти высокие температуры и давление действительно необходимы, но их необходимо снизить, прежде чем использовать на форсунке.

Кроме того, как я уже упоминал, в компрессоре используются движущиеся лопасти, поэтому необходимо затрачивать энергию. Эти два требования могут быть выполнены одновременно в одном устройстве, называемом турбиной. Ее назначение состоит главным образом в том, чтобы использовать газ высокого давления и температуры из камеры сгорания для вращения нескольких лопаток, установленных на том же валу, что и компрессор. По этой причине компрессор работает так же, как и турбина. Наконец, после вращения этих тяжелых лопастей воздух приобретает идеальные параметры и может всасываться в сопло. Воздух разгоняется у сопла и толкает двигатель в обратном направлении.

В настоящее время в некоторых двигателях полностью удалены компоненты компрессора и турбины. Такие двигатели как scramjet, ramjet и т.д. Эти типы двигателей генерируют огромную тягу, поскольку очевидно, что турбины не используют энергию воздуха до его погружения в сопло. Почему их часто не используют? Потому что они не работают самостоятельно. Таким образом, они могут работать только на высоких скоростях, чтобы сделать самолет сверхзвуковым.

Разновидности реактивных двигателей

Существует несколько реактивных двигателей отличающихся по своему принципу работы и подобию. Так, принцип работы ядерного двигателя, в основу которого положена синтезная реакция разложения химического элемента, к примеру – урана.

Данный элемент помещается в реактор. Туда же подводится при помощи турбонасосов рабочее вещество. Распылительными форсунками производится его рассеивание по рабочей камере, в которой происходит контакт с химическим ураном. В результате выделяется энергия большой силы, которая и является движущей.

Не смотря на всю конфиденциальность и секретность информации о ядерном вооружении стран во всем мире, самую большую опасность представляет крылатая ракета, работающая на ядерном топливе.

Системы противовоздушной обороны настолько совершенны, что обмануть простыми полетами и маневрами уже не так-то просто. В этом случае и выступает на передний план ядерный двигатель. Увы, принцип работы ядерного двигателя для крылатой ракеты недоступен и, вряд ли, когда-нибудь будет раскрыт для общественности.

Классы реактивных двигателей:

Все реактивные двигатели подразделяют на 2 класса:

  • Воздушно-реактивные – тепловые двигатели, использующие энергию окисления воздуха, получаемого из атмосферы. В этих двигателях рабочее тело представлено смесью продуктов горения с остальными элементами отобранного воздуха.
  • Ракетные – двигатели, которые на борту содержат все необходимые компоненты и способны работать даже в безвоздушном пространстве.

Прямоточный воздушно-реактивный двигатель – самый простой в классе ВРД по конструкции. Требуемое для работы устройства повышение давления образуется путем торможения встречного воздушного потока.

Рабочий процесс ПВРД можно кратко описать следующим образом:

Во входное устройство двигателя поступает воздух со скоростью полета, кинетическая его энергия преобразуется во внутреннюю, давление и температура воздуха повышаются. На входе в камеру сгорания и по всей длине проточной части наблюдается максимальное давление.

  • Нагревание сжатого воздуха в камере сгорания происходит путем окисления подаваемого воздуха, при этом внутренняя энергия рабочего тела увеличивается.
  • Далее поток сужается в сопле, рабочее тело достигает звуковой скорости, а вновь при расширении – сверхзвуковой. За счет того, что рабочее тело движется со скоростью, превышающей скорость встречного потока, внутри создается реактивная тяга.

В конструктивном плане ПВРД является предельно простым устройством. В составе двигателя есть камера сгорания, внутрь которой горючее поступает из топливных форсунок, а воздух – из диффузора. Камера сгорания заканчивается входом в сопло, которое является суживающейся-расширяющимся.

Развитие технологии смесевого твердого топлива повлекло за собой использование этого горючего в ПВРД. В камере сгорания располагается топливная шашка с центральным продольным каналом. Проходя по каналу, рабочее тело постепенно окисляет поверхность топлива и нагревается само. Применение твердого горючего еще более упрощает состоящую конструкцию двигателя: топливная система становится ненужной.

Смесевое топливо по своему составу в ПВРД отличается от применяемого в РДТТ. Если в ракетном двигателе большую часть состава топлива занимает окислитель, то в ПВРД он используется в небольших пропорциях для активирования процесса горения.

Наполнитель смесевого топлива ПВРД преимущественно состоит из мелкодисперсного порошка бериллия, магния или алюминия. Их теплота окисления существенно превосходит теплоту сгорания углеводородного горючего. В качестве примера твердотопливного ПВРД можно привести маршевый двигатель крылатой противокорабельной ракеты «П-270 Москит».

Тяга ПВРД зависит от скорости полета и определяется исходя из влияния нескольких факторов:

  • Чем больше показатель скорости полета, тем большим будет расход воздуха, проходящего через тракт двигателя, соответственно, большее количество кислорода будет проникать в камеру сгорания, что увеличивает расход топлива, тепловую и механическую мощность мотора.
  • Чем больше расход воздуха сквозь тракт двигателя, тем выше будет создаваемая мотором тяга. Однако существует некий предел, расход воздуха сквозь тракт мотора не может увеличиваться неограниченно.
  • При возрастании скорости полета увеличивается уровень давления в камере сгорания. Вследствие этого увеличивается термический КПД двигателя.
  • Чем больше разница между скоростью полета аппарата и скоростью прохождения реактивной струи, тем больше тяга двигателя.

Зависимость тяги прямоточного воздушно-реактивного двигателя от скорости полета можно представить следующим образом: до того момента, пока скорость полета намного ниже скорости прохождения реактивной струи, тяга будет увеличиваться вместе с ростом скорости полета. Когда скорость полета приближается к скорости реактивной струи, тяга начинает падать, миновав определенный максимум, при котором наблюдается оптимальная скорость полета.

В зависимости от скорости полета выделяют такие категории ПВРД:

Каждая из групп имеет свои отличительные особенности конструкции.

Реактивный двигатель и принцип его работы

Любой из нас способен воочию наблюдать явление реактивной реакции. Все что необходимо, надуть воздушный шарик и отпустить. Каждый знает, что произойдет далее: из шарика будет вырываться поток воздуха, который будет двигать тело шарика в противоположном направлении.

Согласитесь, очень похоже на то, как кальмар, сокращая свои мышцы, создает струю воды, толкающую его в противоположном направлении.

Наблюдения, описанные выше, получили точные научные объяснения, были отображены в физических законах:

  • закон сохранения импульса;
  • третий закон Ньютона.

Именно на них основывается принцип работы реактивного двигателя: в двигатель поступает поток воздуха, который сгорает в камере внутреннего сгорания, смешиваясь с топливом, в результате чего образуется реактивная струя, заставляющая тело двигаться вперед.

Принцип работы достаточно прост, однако устройство подобного двигателя довольно сложное и требует точнейших расчетов.

История развития авиадвигателей

Первый самолет, который запустили братья Райт, имел двигатель с 4-мя цилиндрами. Конечно же, это значительно более простая конструкция, чем те, которые используются сейчас. И, как отмечают эксперты, без эволюции самолетного двигателя было бы невозможно развитие авиаотрасли вообще – примитивные первые моторы просто бы не потянули огромные и мощные машины, летающие сегодня.

Первый авиационный двигатель создал Джон Стрингфеллоу – он считается изобретателем специального двигателя на пару, предназначенный для неуправляемой модели. Но, как показала практика, паровые двигатели не подошли для авиации – они оказались чрезмерно тяжелыми.

C 1903 года началась, как назвали ее эксперты и аналитики, настоящая война моторов. Чарльз Тэйлор поставил на лайнер братьев Райт двигатель, так называемой рядной конструкции – в нем цилиндры находятся один за другим. Есть здесь аналогия с простым автомотором.

Цилиндры в ряд не давали двигателю необходимой мощности, которая требовалась для самолетов. В 1906 году появился двигатель, где цилиндры разместились под прямым углом друг к другу. Также такой вариант мотора имел впрыск. Далее промышленность развивалась, прием достаточно активно. Вследствие этого авиаотрасль имеет современные и мощные моторы.

Законы Ньютона в реактивном движении

Инженеры основывают свои разработки на принципах устройства мироздания, впервые подробно описанных в работах выдающегося британского ученого Исаака Ньютона, жившего в конце 17 столетия. Законы Ньютона описывают механизмы гравитации и рассказывают нам о том, что происходит, когда предметы движутся. Они особенно четко объясняют движение тел в пространстве.

Второй закон Ньютона определяет, что сила движущегося предмета зависит от того, сколько материи он вмещает, иными словами, его массы и изменения скорости движения (ускорения). Значит, чтобы создать мощную ракету, необходимо, чтобы она постоянно выпускала большое количество высокоскоростной энергии. Третий закон Ньютона говорит о том, что на каждое действие будет равная по силе, но противоположная реакция – противодействие. Реактивные двигатели в природе и технике подчиняются этим законам. В случае с ракетой сила действия – материя, которая вылетает из выхлопной трубы. Противодействием является толчок ракеты вперед. Именно сила выбросов из нее толкает ракету. В космосе, где ракета практически не имеет веса, даже незначительный толчок от ракетных двигателей способен заставить большой корабль быстро лететь вперед.

Твердотопливные ракеты: конфигурации

Читая описание для современных твердотопливных ракет, часто можно найти вот такое:

Здесь объясняется не только состав топлива, но и форма канала, пробуренного в центре топлива. «Перфорация в виде 11-конечной звезды» может выглядеть вот так:

Твердотопливные двигатели обладают тремя важными преимуществами:

  • простота
  • низкая стоимость
  • безопасность

Но есть и два недостатка:

  • тягу невозможно контролировать
  • после зажигания двигатель нельзя отключить или запустить повторно

Недостатки означают, что твердотопливные ракеты полезны для непродолжительных задач (ракеты) или систем ускорения. Если вам понадобится управлять двигателем, вам придется обратиться к системе жидкого топлива.

Пульсирующие воздушно-реактивные двигатели

ПуВРД – это один из первых типов реактивных моторов, использование которых началось еще во время Второй мировой войны. Гитлеровцы устанавливали их на крылатые ракеты Фау-1, применявшиеся для обстрелов Британии.

У пульсирующего реактивного двигателя тяга образуется не постоянно, а в виде серии импульсов, следующих с определенной частотой. Он состоит из диффузора, камеры сгорания и цилиндрического сопла. Между камерой сгорания и диффузором установлен специальный клапан. Цикл работы ПуВРД выглядит следующим образом:

  1. Клапан открыт, и воздух свободно поступает в камеру сгорания. Одновременно происходит впрыск топлива;
  2. Топливно-воздушная смесь поджигается – давление резко повышается и закрывает клапан. Рабочее тело истекает из сопла, образуя реактивную тягу;
  3. Давление в камере сгорания падает, клапан в диффузоре под напором входящего воздуха открывается. Цикл начинается сначала.

Пульсирующий характер работы ПуВРД делает его менее эффективным по сравнению с двигателями с постоянным процессом горения. Такие моторы шумны и неэкономичны, зато очень просты и дешево стоят. В настоящее время ПуВРД используются мало: их устанавливают на БПЛА, летающие мишени, также они нашли свое применение в авиамоделировании.

Самый известный случай использования ПуВРД — немецкая крылатая ракета Фау-1

Не будет преувеличением сказать, что создание реактивного двигателя подарило человечеству небо. Благодаря этому устройству самолет превратился из орудия войны в массовый вид транспорта, которым ежегодно пользуются сотни миллионов человек. Однако история реактивного двигателя отнюдь не закончена. Техника и технологии не стоят на месте. Возможно, уже в ближайшие годы появятся новые типы реактивных двигателей, которые позволят нам летать с гиперзвуковой скоростью и наконец-то достигнуть других планет.

Конструкция

Устройство двигателя самолета достаточно сложное. Рабочая температура в таких установках достигает 1000 и более градусов. Соответственно, все детали, из которых двигатель состоит, изготавливаются из устойчивых к воздействию высоких температур и возгоранию материалов. Из-за сложности устройства существует целая область науки о ТРД.

ТРД состоит из нескольких основных элементов:

  • вентилятор;
  • компрессор;
  • камера сгорания;
  • турбина;
  • сопло.

Перед турбиной установлен вентилятор. С его помощью воздух затягивается в установку извне. В таких установках используются вентиляторы с большим количеством лопастей определенной формы. Размер и форма лопастей обеспечивают максимально эффективную и быструю подачу воздуха в турбину. Изготавливаются они из титана. Помимо основной функции (затягивания воздуха), вентилятор решает еще одну важную задачу: с его помощью осуществляется прокачка воздуха между элементами ТРД и его оболочкой. За счет такой прокачки обеспечивается охлаждение системы и предотвращается разрушение камеры сгорания.

Возле вентилятора расположен компрессор высокой мощности. С его помощью воздух поступает в камеру сгорания под высоким давлением. В камере происходит смешивание воздуха с топливом. Образующаяся смесь поджигается. После возгорания происходит нагрев смеси и всех расположенных рядом элементов установки. Камера сгорания чаще всего изготавливается из керамики. Это объясняется тем, что температура внутри камеры достигает 2000 градусов и более. А керамика характеризуется устойчивостью к воздействию высоких температур. После возгорания смесь поступает в турбину.

Вид самолетного двигателя снаружи

Турбина представляет собой устройство, состоящее из большого количества лопаток. На лопатки оказывает давление поток смеси, приводя тем самым турбину в движение. Турбина вследствие такого вращения заставляет вращаться вал, на котором установлен вентилятор. Получается замкнутая система, которая для функционирования двигателя требует только подачи воздуха и наличия топлива.

Далее смесь поступает в сопло. Это завершающий этап 1 цикла работы двигателя. Здесь формируется реактивная струя. Таков принцип работы двигателя самолета. Вентилятор нагнетает холодный воздух в сопло, предотвращая его разрушение от чрезмерно горячей смеси. Поток холодного воздуха не дает манжете сопла расплавиться.

Принцип действия реактивной силы

Если вам доводилось стрелять из огнестрельного оружия, или хотя бы наблюдать процесс со стороны, вы уже сталкивались с реактивной силой. Именно струя раскаленных газов, образовавшихся при сгорании пороха, отталкивает ствол назад. Чем больше количество заряда, тем круче отдача. А теперь представьте, что процесс воспламенения смеси постепенен и непрерывен. Получаем ракету с твердотопливным РД. Это самый простой вид двигателя, хорошо знакомый ракетомоделистам.

В качестве топлива в РДТТ сначала использовали дымный порох, более сложные варианты уже имеют основу в виде нитроцеллюлозы, растворенной в нитроглицерине. Топливом для небольших ракет выступает натриевая или калиевая селитра, смешанная с углеводами типа сахара или сорбита. Сделать такой движок можно самостоятельно, можно найти готовую модель и топливо в продаже. Большие твердотопливные двигатели использовались для запуска ракет, выводивших на орбиту шаттлы (характерный густой оранжевый дым при запуске ракеты дают именно такие двигатели), а также в военных целях для МБР. У них топливом выступает смесь полимерного горючего и перхлорат аммония как окислитель. Знаменитый «Тополь-М» основан именно на твердотопливных двигателях.

Твердотопливные двигатели относительно простые в конструкции, имеют нетоксичное топливо, надежные и пожаробезопасные, могут долго храниться, представляя собой стратегический арсенал. Однако удельный импульс у них небольшой, ими трудно управлять (включая не только направление тяги, но и запуск, а также остановку двигателя), а потому для космических полетов более предпочтительны ракетные двигатели на куда более эффективном жидком топливе.

Это интересно: Кто придумал самолет на солнечных батареях

Кто придумал реактивный двигатель

Идею применения реактивной тяги для преодоления земного притяжения впервые довел до практической осуществимости в 1903 году российский ученый К. Э. Циолковский в своем труде “Исследование мировых пространств реактивными приборами”. Опубликованная в «Научном обозрении» статья утвердила за ним репутацию мечтателя и не была воспринята всерьез. Константину Эдуардовичу потребовались годы трудов и смена политического строя, чтоб доказать свою правоту.

Сейчас много говорят о первенстве в этом вопросе одного из цареубийц Александра 2, революционера Кибальчича. Хотя его завещание и датировались 1881 годом, но к моменту выхода работы Константина Эдуардовича еще было погребено в тюремных архивах. К тому же это были лишь наброски, тогда как ученый сумел подвести надежный грунт под теорию уже в своих ранних работах.

Виды двигателей

Двигатели для самолетов бывают различных типов:

  • классические;
  • турбовинтовые;
  • турбовентиляторные;
  • прямоточные.

Классические установки работают по принципу, описанному выше. Такие двигатели устанавливают на воздушных судах различной модификации. Турбовинтовые функционируют несколько иначе. В них газовая турбина не имеет механической связи с трансмиссией. Эти установки приводят самолет в движение с помощью реактивной тяги лишь частично. Основную часть энергии горячей смеси данный вид установки использует для привода воздушного винта через редуктор. В такой установке вместо одной присутствует 2 турбины. Одна из них приводит компрессор, а вторая – винт. В отличие от классических турбореактивных, винтовые установки более экономичны. Но они не позволяют самолетам развивать высокие скорости. Их устанавливают на малоскоростных воздушных судах. ТРД позволяют развивать гораздо большую скорость во время полета.

Турбовентиляторные двигатели представляют собой комбинированные установки, сочетающие элементы турбореактивных и турбовинтовых двигателей. Они отличаются от классических большим размером лопастей вентилятора. И вентилятор, и винт функционируют на дозвуковых скоростях. Скорость перемещения воздуха понижается за счет наличия специального обтекателя, в который помещен вентилятор. Такие двигатели более экономично расходуют топливо, чем классические. Кроме того, они характеризуются более высоким КПД. Чаще всего их устанавливают на лайнерах и самолетах большой вместительности.

Размер двигателя самолета относительно человеческого роста

Прямоточные воздушно-реактивные установки не предполагают использование подвижных элементов. Воздух втягивается естественным путем благодаря обтекателю, установленному на входном отверстии. После поступления воздуха двигатель работает аналогично классическому.

Некоторые самолеты летают на турбовинтовых двигателях, устройство которых гораздо проще, чем устройство ТРД. Поэтому у многих возникает вопрос: зачем использовать более сложные установки, если можно ограничиться винтовой? Ответ прост: ТРД превосходят винтовые двигатели по мощности. Они мощнее в десятки раз. Соответственно, ТРД выдает гораздо большую тягу. Благодаря этому обеспечивается возможность поднимать в воздух большие самолеты и осуществлять перелеты на высокой скорости.

В передней части реактивного двигателя располагается вентилятор. Он забирает воздух из внешней среды, засасывая его в турбину. В двигателях, применяемых в ракетах, воздух заменяет жидкий кислород. Вентилятор снабжен множеством титановых лопастей, имеющих специальную форму.

Площадь вентилятора стараются сделать достаточно большой. Помимо забора воздуха эта часть системы участвует также и в охлаждении двигателя, предохраняя его камеры от разрушения. Позади вентилятора располагается компрессор. Он под большим давлением нагнетает воздух в камеру сгорания.

Один из главных конструктивных элементов реактивного двигателя – камера сгорания. В ней топливо смешивается с воздухом и поджигается. Происходит возгорание смеси, сопровождающееся сильным разогревом деталей корпуса. Топливная смесь под действием высокой температуры расширяется. Фактически в двигателе происходит управляемый взрыв.

Из камеры сгорания смесь топлива с воздухом поступает в турбину, которая состоит из множества лопаток. Реактивный поток с усилием давит на них и приводит турбину во вращение. Усилие передается на вал, компрессор и вентилятор. Образуется замкнутая система, для работы которой требуется лишь постоянный подвод топливной смеси.

Последняя по счету деталь реактивного двигателя – сопло. Сюда из турбины поступает разогретый поток, формируя реактивную струю. В эту часть двигателя также подается от вентилятора холодный воздух. Он служит для охлаждения всей конструкции. Воздушный поток защищает манжету сопла от вредного воздействия реактивной струи, не позволяя деталям расплавиться.

Примеры в природе

Наверняка купаясь в море, Вы видели медуз, но вряд ли задумывались, что передвигаются эти удивительные (и к тому же медлительные) существа как раз таки с благодаря реактивному движению. А именно с помощью сокращения своего прозрачного купола они выдавливают воду, которая служит своего рода «реактивных двигателем» медуз.

Похожий механизм движения имеет и каракатица – через особую воронку впереди тела и через боковую щель она набирает воду в свою жаберную полость, а затем энергично выбрасывает ее через воронку, направленную взад либо в бок (в зависимости от направления движения нужного каракатице).

Но самый интересный реактивный двигатель созданный природой имеется у кальмаров, которых вполне справедливо можно назвать «живыми торпедами». Ведь даже тело этих животных по своей форме напоминает ракету, хотя по правде все как раз с точностью наоборот – это ракета своей конструкцией копирует тело кальмара.

Если кальмару необходимо совершить быстрый бросок, он использует свой природный реактивный двигатель. Тело его окружено мантией, особой мышечной тканью и половина объема всего кальмара приходится на мантийную полость, в которую тот всасывает воду. Потом он резко выбрасывает набранную струю воды через узкое сопло, при этом складывая все свои десть щупалец над головой таким образом, чтобы приобрести обтекаемую форму. Благодаря столь совершенной реактивной навигации кальмары могут достигать впечатляющей скорости – 60-70 км в час.

Среди обладателей реактивного двигателя в природе есть и растения, а именно так званный «бешеный огурец». Когда его плоды созревают, в ответ на самое легкое прикосновение он выстреливает клейковиной с семенами

Поделитесь в социальных сетях:FacebookX
Напишите комментарий