Устройство крыла самолета

Об аэродинамических законах

Когда летательный аппарат передвигается, его скорость, другие характеристики движения меняются, как и характеристики воздушных потоков, которые его обтекают. Вместе с тем меняются и спектры обтекания. Это неустановившееся движение.

Чтобы лучше это понять, нужны упрощения. Это в значительной мере упростит вывод, а инженерное значение останется прежним.

Во-первых, рассматривать лучше всего установившееся движение. Имеется в виду, что потоки воздуха не будут меняться со временем.

Во-вторых, лучше принять гипотезу неразрывности среды. То есть в расчет не берутся молекулярные движения воздуха. Воздух рассматривается в качестве неразрывной среды с постоянной плотностью.

В-третьих, лучше принять, что воздух не вязок. Фактически его вязкость равняется нулю, а силы внутреннего трения отсутствуют. То есть из спектра обтекания удаляется пограничный слой, не берется в расчет лобовое сопротивление.

Владение главными аэродинамическими законами позволяет выстроить математические модели того, как летательный аппарат обтекается воздушными потоками. Оно же позволяет вычислить показатель основных сил, которые зависят от того, как распределяется давление по самолету.

Геометрические характеристики крыла

Геометрические характеристики — перечень параметров, понятий и терминов используемых для проектирования крыла и определения наименований его элементов:

Размах крыла (L) — расстояние между двумя плоскостями, параллельными базовой плоскости самолёта и касающимися концов крыла. Хорда несущей поверхности крыла — отрезок прямой взятый в одном из сечений крыла плоскостью, параллельной базовой плоскости самолёта, и ограниченный передней и задней точками профиля. Местная хорда крыла (b(z)) — отрезок прямой на профиле крыла, соединяющий переднюю и заднюю точки контура профиля в заданном сечении по размаху крыла. Длина местной хорды крыла (b(z)) — длина отрезка линии проходящей через заднюю и переднюю точки аэродинамического профиля в местном сечении по размаху крыла. Центральная хорда крыла (b0) — местная хорда крыла в базовой плоскости самолёта, получаемая продолжением линии передней и задней кромок крыла до пересечения с этой плоскостью. Длина центральной хорды крыла (b0) — длина отрезка между точками пересечения передней и задней кромок крыла базовой плоскостью самолёта. Бортовая хорда крыла (bб) — хорда по линии разъёма крыла и фюзеляжа в сечении крыла, параллельном базовой плоскости самолёта. Концевая хорда крыла (bк) — хорда в концевом сечении крыла, параллельном базовой плоскости самолёта. Базовая плоскость крыла — плоскость содержащая центральную хорду крыла и перпендикулярная базовой плоскости самолёта. Площадь крыла (S) — площадь проекции крыла на базовую плоскость крыла, включая подфюзеляжную часть крыла и наплывы крыла. Контрольное сечение крыла — условное сечение крыла плоскостью, параллельной базовой плоскости крыла (z = const). Кривизна крыла — переменное отклонение средней линии аэродинамических профилей от их хорд; характеризуется относительной вогнутостью профиля (отношением максимального отклонения средней линии от хорды к длине хорды). Срединная поверхность крыла — образуемая совокупностью всех средних линий профилей крыла по размаху; обычно задаётся некоторыми законами изменения вогнутости профиля и крутки крыла по размаху; при постоянной величине крутки крыла и нулевой кривизне профилей из которых составлено крыло, срединная поверхность представляет собой плоскость. Удлинение крыла (λ) — относительный геометрический параметр, определяемый как отношение: λ = L²/S; Сужение крыла (η) — относительный геометрический параметр крыла, определяемый как отношение: η = b0/bк; Геометрическая крутка крыла — поворачивание хорд крыла по его размаху на некоторые углы (по закону φкр = f(z)), которые отсчитываются от плоскости, за которую обычно принимают базовую плоскость крыла (при условии если угол заклинения крыла по бортовой хорде равен нулю). Применяется для улучшения аэродинамических характеристик, устойчивости и управляемости на крейсерском режиме полёта и при выходе на большие углы атаки. Местный угол геометрической крутки крыла (φкр(z)) — угол между местной хордой крыла и его базовой плоскостью, причём угол φкр(z) считается положительным, когда передняя точка местной хорды выше задней очки той же хорды крыла.

Это интересно: Как стать бортпроводником Аэрофлота — что необходимо знать

Взлётно-посадочные системы 2280

Взлёт и посадку считают ответственными периодами при эксплуатации самолёта. В этот период возникают максимальные нагрузки на всю конструкцию. Гарантировать приемлемый разгон для поднятия в небо и мягкое касание поверхности посадочной полосы могут только надёжно сконструированные стойки шасси. В полете они служат дополнительным элементом придания жесткости крыльям.

Конструкция наиболее распространённых моделей шасси представлена следующими элементами:

  • подкос складной, компенсирующий лотовые нагрузки;
  • амортизатор (группа), обеспечивает плавность хода самолёта при движении по взлетно-посадочной полосе, компенсирует удары во время контакта с землёй, может устанавливаться в комплекте с демпферами-стабилизаторами;
  • раскосы, выполняющие роль усилителя жесткости конструкции, могут называться стержнями, располагаются диагонально по отношению к стойке;
  • траверсы, крепящиеся к конструкции фюзеляжа и крыльям стойки шасси;
  • механизм ориентирования – для управления направлением движения на полосе;
  • замочные системы, обеспечивающие крепление стойки в необходимом положении;
  • цилиндры, предназначенные для выпуска и убирания шасси.

Стойка шасси самолёта

Сколько колес размещено у самолета? Количество колёс определяется в зависимости от модели, веса и назначения воздушного судна. Наиболее распространённым считают размещение двух основных стоек с двумя колёсами. Более тяжёлые модели – трёх стоечные (размещены под носовой частью и крыльях), четырёх стоечные – две основные и две дополнительные опорные.   

Крылья против тел

Некоторые конструкции не имеют четкого соединения крыла и фюзеляжа или корпуса. Это может быть потому, что один или другой из них отсутствует, или потому, что они сливаются друг с другом:

  • Летающее крыло : у самолета нет отчетливого фюзеляжа или горизонтального оперения (хотя могут присутствовать плавники и гондолы, пузыри и т. Д.), Как на бомбардировщике-невидимке B-2 .
  • Комбинированный корпус или комбинированный корпус крыла : плавный переход между крылом и фюзеляжем без жесткой разделительной линии. Уменьшает смачиваемую площадь, а также может уменьшить помехи между воздушным потоком над корневой частью крыла и любым прилегающим телом, в обоих случаях уменьшая сопротивление. Локхид SR-71 spyplane иллюстрирует этот подход.
  • Подъемный корпус : у самолета отсутствуют идентифицируемые крылья, но он полагается на фюзеляж (обычно на высоких скоростях или больших углах атаки) для обеспечения аэродинамической подъемной силы, как на X-24 .
Летающее крыло Смешанное тело Подъемное тело

Некоторые конструкции могут попадать в несколько категорий в зависимости от интерпретации, например, многие БЛА или дроны можно рассматривать либо как бесхвостое смешанное крыло, либо как летающее крыло с глубокой центральной хордой.

Механизмы задней кромки крыла

При взлете и посадке самолета, для увеличения площади крыла и изменения его аэродинамических характеристик, применяются щитки и закрылки.

Они представляют собой выдвижные или поворотные плоскости. Обыкновенные щитки просто отклоняются вниз при помощи поворотного механизма. Выдвижные щитки, вначале выдвигаются назад за плоскость крыла, а затем наклоняются вниз. Закрылки подразделяются на обыкновенные и щелевые.

Обыкновенные закрылки тоже просто отклоняются вниз. Обыкновенные щитки и закрылки при отклонениях не имеют зазора между крылом. Щелевые закрылки в рабочем положении образуют зазор между своим корпусом и крылом. За счет этого зазора, области низкого и высокого давления в верхней и нижней поверхности крыла сообщаются между собой. Это способствует равномерному обтеканию крыла воздухом, предотвращает срывы потока и падение подъемной силы.

Выпущенные закрылки (Фаулера) самолета ТУ-154

Щелевые закрылки, так же как и крыло подвергаются скоростному напору воздуха и поэтому имеют аэродинамический профиль.

Они подразделяются на однощелевые и многощелевые. Однощелевые закрылки представляют собой простую однопрофильную конструкцию и просто отклоняются вниз, или выдвигаются назад из крыла, а затем отклоняются вниз.

Многощелевые закрылки имеют сложную многоступенчатую многопрофильную (до 3-х профилей) конструкцию с механизмом выдвижения из крыла. Каждый профиль многоступенчатой конструкции отклоняется на свой угол. При опускании закрылков и щитков изменяется аэродинамика крыла, а при их выдвижении увеличивается его площадь. Все эти действия способствуют увеличению подъемной силы крыла.

Простой (поворотный) закрылок

Планер

Обычно планер самолёта включает фюзеляж, крыло, хвостовое оперение, шасси и гондолы, куда помещают двигательные установки или другие агрегаты. Этот набор элементов характерен для классической конструктивной схемы. Некоторые элементы могут отсутствовать в других конструктивных схемах.

Компоновочные схемы

На сегодняшний день различают следующие компоновочные схемы самолётов:

  • классическая компоновка
  • бесхвостка
  • утка
  • летающее крыло
  • продольный триплан (с передним и хвостовым горизонтальным оперением)
  • тандем (два крыла расположены друг за другом)
  • конвертируемая (Ту-144)

Фюзеляж

Фюзеляж является «телом» самолёта. В нём располагаются кабина экипажа, основные топливные баки, системы управления и контроля, пассажирские салоны и багажные отсеки (в пассажирских самолётах) или грузовые отсеки (в грузовых самолётах), оружие (в боевых самолётах) и так далее. Конструктивно-силовая схема фюзеляжа, как правило, состоит из продольных элементов (лонжеронов и стрингеров), поперечных элементов (шпангоутов) и обшивки (металлических (чаще дюралюминиевых) листов).

Пассажирские самолёты разделяют на узко- и широкофюзеляжные. У первых диаметр поперечного сечения фюзеляжа составляет в среднем 2-3 метра. Диаметр широкого фюзеляжа — не менее шести метров. Все широкофюзеляжные самолёты — двухпалубные: на верхней палубе располагаются пассажирские места, на нижней — багажные отсеки. Существуют самолёты с двумя пассажирскими палубами — Airbus A380 и Боинг 747.

Крыло

Ил-76, высокоплан с Т-образным оперением

Крыло является ключевой частью в конструкции самолёта, оно создаёт подъёмную силу: профиль крыла устроен таким образом, что консоль разделяет набегающий на самолёт поток воздуха. Над верхней кромкой крыла образуется область низкого давления, одновременно под нижней — область высокого давления, крыло «выталкивается» наверх, и самолёт поднимается.

Крыло чаще всего крепится к фюзеляжу:

Крепление крыла непосредственно к центральной части фюзеляжа без центроплана характерно для боевых самолётов (Ту-22М). Самолёт также может иметь два, три и более крыла. Чаще всего у самолётов, имеющих два крыла — бипланов — одно крыло крепится к верхней части фюзеляжа, а другое — к нижней (Ан-2).

На крыле установлено множество отклоняющихся меньших консолей (механизации): закрылки, предкрылки, спойлеры, элероны, интерцепторы и другие. Они позволяют регулировать перемещение самолёта в трёх плоскостях, путевую скорость и некоторые другие параметры полёта. На современных самолётах на крыльях часто устанавливаются вертикальные законцовки, уменьшающие завихрения воздуха на кончиках крыла, снижая уровень вибрации, и, как следствие, экономя топливо. Внутри крыльев (у крупных самолётов), как правило, установлены топливные баки. У самолётов-истребителей дополнительные топливные баки нередко подвешиваются к специальным вертикальным консолям-креплениям.

Аэродинамические свойства крыла определяются его геометрией: размахом, площадью, а также углом и направлением стреловидности. Существуют самолёты с изменяемой геометрией крыла (самолёты с крылом изменяемой стреловидности).

Оперение

Оперение устанавливается в хвостовой или носовой части фюзеляжа. Хвостовое оперение в большинстве случаев представляет собой вертикально расположенный киль (или несколько килей — как правило два киля) и горизонтальный стабилизатор, близкие по конструкции к крылу. Киль регулирует путевую устойчивость самолёта (по оси движения), а стабилизатор — продольную (т. е. устойчивость по тангажу).

Горизонтальное оперение устанавливается на фюзеляже (Ил-86) или на верху киля (T-образная схема (Ту-154, Ил-76)). Киль устанавливается на фюзеляж или в двухкилевой схеме — на обоих кончиках цельного стабилизатора (Ан-225). На некоторых боевых самолётах дополнительное оперение устанавливается в носовой части фюзеляжа (Су-35). Для обеспечения достаточной путевой устойчивости на высоких скоростях, сверхзвуковые самолёты имеют непропорционально большой киль (Ту-22М3) или два киля (Су-27, МиГ-25, F-15).

Это интересно: Забыл вещи в самолете — что делать

Закрылки самолета. Основные виды.

Закрылки – первая из придуманных разновидностей механизации крыла, они же и наиболее эффективны. Они широко применялись еще до Второй Мировой войны, а на ее протяжении и после их конструкция была доработана и, также, были изобретены новые виды закрылок. Основными характеристиками, которые указывают на то, что это закрылок действительно является им – его расположение и манипуляции, которые с ним происходят. Закрылки всегда находятся на задней кромке крыла и всегда опускаются вниз, и, к тому же, могут выдвигаться назад. При опускании закрылка увеличивается кривизна крыла, при его выдвижении – площадь. А раз подъемная сила крыла прямо пропорциональна его площади и коэффициенту подъемной силы, то если обе величины увеличиваются, закрылок выполняет свою функцию наиболее эффективно. По  своему устройству и манипуляциям закрылки делятся на:

  • простые закрылки (самый первый и самый простой вид закрылок)
  • щитовые закрылки
  • щелевые закрылки
  • закрылки Фаулера (наиболее эффективный и наиболее широко применяемый в гражданской авиации вид закрылок)

Каким образом функционируют все вышеперечисленные закрылки показано на схеме. Простой закрылок, как видно из схемы, просто отклоняемая вниз задняя кромка крыла. Таким образом, кривизна крыла увеличивается, однако  область низкого давления над крылом уменьшается, потому простые закрылки менее эффективны, чем щитовые, верхняя кромка которых не отклоняется и область низкого давления не теряет в размерах.

Щелевой закрылок получил свое название по причине образуемой им щели после отклонения. Эта щель позволяет проходить воздушной струе к области низкого давления и направлена она таким образом, чтобы предотвращать срыв потока (процесс, во время которого величина подъемной силы резко падает), придавая ему дополнительную энергию.

Закрылок Фоулера выдвигается назад и вниз, чем увеличивает и площадь и кривизну крыла. Как правило, он сконструирован таким образом, чтобы при его выдвижении еще и создавалась щель, или две, или даже три. Соответственно он выполняет свою функцию наиболее эффективно и может давать прирост в подъемной силе до 100%.

Предкрылки. Основные функции. 

Предкрылки – отклоняемые поверхности на передней кромке крыла. По своему строению и функциям они схожи с закрылками Фаулера – отклоняются вперед и вниз, увеличивая кривизну и немного площадь, образуют щель, для прохода воздушного потока к верхней кромке крыла, чем способствуют увеличению подъемной силы. Предкрылки, просто отклоняемые вниз, которые не создают щели называются отклоняемыми носками и только увеличивают кривизну крыла.

Спойлеры и их задачи. 

Спойлеры. Перед рассмотрением спойлеров, следует заметить, что при создании дополнительной подъемной силы всеми вышеперечисленными устройствами создается дополнительное лобовое сопротивление, что ведет к понижению скорости. Но это происходит как следствие повышения подъемной силы, в то время как задача спойлеров – конкретно значительное повышение лобового сопротивления и прижимание самолета к земле после касания. Соответственно это единственное устройство механизации крыла, которое находится на верхней его поверхности и отклоняется вверх, чем и создается прижимная сила.

А зачем же нужно увеличивать подъемную силу? Вообще требуется не столько увеличение подъемной силы, сколько уменьшение скорости самолета, по крайней мере в гражданской авиации. А поскольку эти две величины непосредственно связаны, потому и происходит одно за счет другого.

Уменьшение скорости необходимо при взлете и посадке для обеспечения большей безопасности и уменьшения длины взлетной полосы. Кроме того, боевым самолетам довольно часто при выполнении того или иного маневра необходимо очень быстро увеличить либо уменьшить подъемную силу, для чего и служит механизация крыла.

Угловая скорость по крену

Во время вращения самолета вокруг продольной оси на крыло действует демпфирующий момент, противодействующий вращению. Возникает этот момент из-за разных местных углов атаки консолей крыла. Действительно, скорость набегающего потока векторно складывается с линейной скоростью конца консоли, направленной по касательной в плоскости, перпендикулярной оси самолета. Допустим, самолет вращается по часовой стрелке и в рассматриваемый момент консоли крыла горизонтальны. Правая консоль движется вниз, левая – вверх. Местный угол атаки профиля крыла на конце правой консоли увеличивается и подъемная сила на конце правой консоли растет. На левой консоли местный угол атаки ее конца уменьшается, или даже становится отрицательным – это зависит от соотношения линейной скорости самолета, скорости его вращения и размаха крыла. Из-за разницы местных углов атаки возникает момент по крену, тормозящий вращение самолета. Причем основной вклад в создание этого демпфирующего момента вносят концы консолей. Зависимость погонного демпфирующего момента участка крыла от расстояния до продольной оси самолета – квадратичная. Потому что линейно к концу консоли нарастает плечо силы, и линейно же нарастает компонента линейной тангенциальной скорости, векторная сумма которой со скоростью самолета и определяет местный угол атаки, а значит и С y и подъемную силу. В результате, крыло с сужением 2 должно было бы иметь вчетверо меньший демпфирующий момент по крену в сравнении с прямоугольным крылом. В действительности, процессы несколько сложнее, т.к. выше не учтено изменение распределения погонной подъемной силы по размаху крыла. Это явление уменьшает эффект от сужения. В теории крыла доказано, что при переходе от прямоугольного крыла к крылу с сужением демпфирующий момент пропорционален величине (n+3)/(2(n+1)), где n – сужение крыла. Т.е. демпфирующий момент прямоугольного крыла вдвое больше равного ему по площади и размаху треугольного крыла. А это значит, что при одинаковых элеронах и угле их отклонения крыло с сужением будет вращаться по крену с большей угловой скоростью.

Особенно заметно влияние сужения на угловую скорость по крену у треугольного крыла – МИГ-21 во Вьетнаме в ближнем бою абсолютно превосходил фантом F-4, в т.ч. из-за дикой маневренности по крену. Впервые с этим явлением столкнулись на испытаниях Ла-250, имеющего треугольное крыло, да еще малого удлинения. Испытатели справились с ним только после установки системы гиростабилизации по крену. Система была, между прочим, гидромеханическая, без электроники.

Принцип действия

Дым показывает движение воздуха, обусловленное взаимодействием крыла с воздухом. Подъёмная сила крыла создаётся за счёт разницы давлений воздуха на нижней и верхней поверхностях. Давление же воздуха зависит от распределения скоростей воздушных потоков вблизи этих поверхностей.

Одним из распространённых объяснений принципа действия крыла является ударная модель Ньютона: частицы воздуха, сталкиваясь с нижней поверхностью крыла, стоящего под углом к потоку, упруго отскакивают вниз («скос потока»), согласно третьему закону Ньютона, толкая крыло вверх. Данная упрощённая модель учитывает закон сохранения импульса, но полностью пренебрегает обтеканием верхней поверхности крыла, вследствие чего она даёт заниженную величину подъёмной силы.

В другой распространённой, но неверной модели возникновение подъёмной силы объясняется разностью давлений на верхней и нижней сторонах профиля, возникающей согласно закону Бернулли: на нижней поверхности крыла скорость протекания воздуха оказывается ниже, чем на верхней, поэтому подъёмная сила крыла направлена снизу вверх. Обычно рассматривается крыло с плоско-выпуклым профилем: нижняя поверхность плоская, верхняя — выпуклая. Набегающий поток разделяется крылом на две части — верхнюю и нижнюю, — при этом, вследствие выпуклости крыла, верхняя часть потока должна пройти больший путь, нежели нижняя. Для обеспечения неразрывности потока скорость воздуха над крылом должна быть больше, чем под ним, из чего следует, что давление на верхней стороне профиля крыла ниже, чем на нижней; этой разностью давлений обуславливается подъёмная сила. Однако данная модель не объясняет возникновение подъёмной силы на двояковыпуклых симметричных или на вогнуто-выпуклых профилях, когда потоки сверху и снизу проходят одинаковое расстояние.

Для устранения этих недостатков Н. Е. Жуковский ввёл понятие циркуляции скорости потока; в 1904 году им была сформулирована теорема Жуковского. Циркуляция скорости позволяет учесть скос потока и получать значительно более точные результаты при расчётах.

Положение закрылков (сверху вниз): 1) Наибольшая эффективность (набор высоты, горизонтальный полёт, снижение) 2) Наибольшая площадь крыла (взлёт) 3) Наибольшая подъёмная сила, высокое сопротивление (заход на посадку) 4) Наибольшее сопротивление, уменьшенная подъёмная сила (после посадки)

Одним из главных недостатков вышеприведённых объяснений является то, что они не учитывают вязкость воздуха, то есть перенос энергии и импульса между отдельными слоями потока (что и является причиной циркуляции). Существенное влияние на крыло может оказать поверхность земли, «отражающая» возмущения потока, вызванные крылом, и возвращающая часть импульса обратно (экранный эффект).

Также в приведённых объяснениях не раскрывается механизм передачи энергии от крыла к потоку, то есть совершения работы самим крылом. Хотя верхняя часть воздушного потока действительно имеет повышенную скорость, геометрическая длина пути не имеет к этому отношения — это вызвано взаимодействием слоёв неподвижного и подвижного воздуха и верхней поверхности крыла. Поток воздуха, следующий вдоль верхней поверхности крыла, «прилипает» к ней и старается следовать вдоль этой поверхности даже после точки перегиба профиля (эффект Коанда). Благодаря поступательному движению, крыло совершает работу по разгону этой части потока. Достигнув точки отрыва у задней кромки, воздух продолжает своё движение вниз по инерции вместе с массой, отклонённой нижней поверхностью крыла, что в сумме вызывает скос потока и возникновение реактивного импульса. Вертикальная часть этого импульса и вызывает подъёмную силу, уравновешивающую силу тяжести, горизонтальная же часть уравновешивается лобовым сопротивлением.

На самом деле, обтекание крыла является очень сложным трёхмерным нелинейным, и зачастую нестационарным, процессом. Подъёмная сила крыла зависит от его площади, профиля, формы в плане, а также от угла атаки, скорости и плотности потока (числа Маха) и от целого ряда других факторов.

Перейдем к моделям

Хотя существует несколько типов закрылков, в моделях обычно используют обычный не щелевой закрылок – он является частью задней кромки крыла. Этого вполне достаточно, что бы закрылки выполняли свои функции и были просты в реализации. При появлении закрылков на модели вы можете использовать несколько новых режимов полетов. Основным преимуществом использования закрылков является более короткая дистанция взлета и посадки.

Использование закрылков может привести к изменению направления полета относительно горизонта вверх или вниз. Руль высоты должен быть использован для компенсации изменения траектории полета. Еще одной особенностью использования закрылков является то, что отклоненные вниз на половину закрылки увеличивают подъемную силу крыла, а отклоненные до упора – резко увеличивают сопротивление. Поэтому для взлета лучше использовать на половину отклоненные закрылки, а для посадки полностью отклоненные. Отклоненные закрылки нагружают конструкцию крыла и исполнительные механизмы и должны использоваться на малых скоростях полета. Настоящие самолеты даже имеют свой диапазон скоростей, на которых можно использовать закрылки.  

Теперь, мы знаем о большей подъемной силе крыла с закрылками на малых скоростях. Значит, при убирании закрылков на этой же скорости подъемная сила будет меньше, и самолет может – “провалиться”. Поэтому надо добавить газ перед уборкой закрылков. Не выполнение этого требования может привести к сваливанию модели раньше чем Вы успеете набрать безопасную скорость. Это же нужно учитывать и при взлете модели. Взлетать лучше без закрылков или с отклоненными закрылками не более 20 градусов. Слишком большое отклонение может не дать набрать модели достаточной для взлета скорости.

Использование закрылков увеличивает механические нагрузки на крыло и требует повышенного внимания после их установки. Убедитесь, что серво, используемые для закрылков, имеют достаточное усилие и прочно закреплены. Есть много способов передачи усилия от серво на закрылки. Это можно сделать обычным способом через тяги от серво или даже общей трубкой для обоих закрылков. На больших или скоростных моделях лучшим способом организации механизации закрылков является использование отдельного серво для каждого закрылка. Максимальные углы отклонения регулируются длиной рычага качалки серво. Т.е. Вы сами подбираете, в какое отверстие надо вставить тягу на качалке серво и на кабанчике закрылка. 

Пилот имеет несколько вариантов настройки управления закрылками на передатчике. Наименее желательным является использование двухпозиционного переключателя, который либо убирает либо выпускает закрылки. Это очень резко меняет режим полета модели. А вот трех позиционный переключатель позволяет добавить промежуточную позицию закрылка для более копийных полетов. Пропорциональное отклонение закрылков это уже третий путь решения. Тут может быть хоть какое положение закрылков. Однако недостатком будет тот факт, что иногда бывает трудно сказать, на какой угол отклонен закрылок. Особенно если на пропорциональном канале орган управления – круглая ручка на передатчике. Четвертая возможность настройки заключается в возможности настроить замедления работы конкретного канала передатчика. В этом случае закрылки выпускаются медленно, и режим полета модели меняется плавно. Это дает возможность пилоту держать ровную траекторию полета модели. Надо сказать, не во всех передатчиках есть такая функция. Вместо нее можно использовать отдельные электронные устройства – замедлители серво. Их еще используют для медленного выпуска или уборки шасси. Замедлители включаются между серво и приемником. 

Использование закрылков на масштабной модели – очень полезный опыт, который позволяет заработать дополнительно очки во время полетов моделей копий. Ведь Вы можете использовать модель так же как и прототип – в разных режимах полета. Обязательно попробуйте полетать с закрылками! Это выглядит завораживающе! Модель как будто зависает в воздухе! 

Владимир Масленников

пишите отзывы, мы пишем и переводим статьи для Вас!

Авторское право: Перепечатка материалов перевода статьи без разрешения автора запрещено. Автор разрешает дать ссылку на эту статью на сайте Территория Хобби.

Внешние формы и геометрические параметры крыла

Рис. 3. Различные формы крыла в плане: а – прямое прямоугольное; б – прямое трапециевидное; в – прямой стреловидности; г – обратной стреловидности; д – треугольное; е &nd…

ха­рак­те­ри­зу­ют­ся его фор­мой в пла­не и про­фи­лем по­пе­реч­ного се­че­ния. Гео­мет­рич. па­ра­мет­ры К. в пла­не: цен­траль­ная, или кор­не­вая, хор­да b (со­от­вет­ст­вен­но се­че­ние К. в плос­ко­сти сим­мет­рии на­зы­ва­ет­ся кор­не­вым), кон­це­вая хор­да $b_к$ (на кон­цах К.), угол стре­ло­вид­но­сти $χ$ (угол ме­ж­ду пер­пен­ди­ку­ля­ром к плос­ко­сти сим­мет­рии К. и ли­ни­ей пе­ред­ней кром­ки К. или ли­ни­ей од­ной чет­вер­ти хорд, $χ_{1/4}$), пло­щадь $S$, раз­мах $l$ (рас­стоя­ние от од­но­го кон­це­во­го про­фи­ля до дру­го­го). Фор­ма К. в пла­не оп­ре­де­ля­ет­ся уд­ли­не­ни­ем $λ=l^2/S$ и су­же­ни­ем $η=b_0/b_к$. Уг­ло­вое от­кло­не­ние плос­ко­сти хорд К. от его го­ри­зон­таль­ной ба­зо­вой плос­ко­сти на­зы­ва­ет­ся по­пе­реч­ным $V$ К. (рис. 2), ха­рак­те­ри­зу­ет­ся уг­лом $ψ$. По­пе­реч­ное $V$ К. оп­ре­де­ля­ет сте­пень по­пе­реч­ной ус­той­чи­во­сти ЛА: при $ψ>0$ – по­вы­шен­ная ус­той­чи­вость (нуж­на для не­ма­нёв­рен­ных и ма­ло­ма­нёв­рен­ных ЛА), при $ψ<0$ – по­ни­жен­ная ус­той­чи­вость (для вы­со­ко­ма­нёв­рен­ных ЛА). Фор­ма и раз­ме­ры К. оп­ре­де­ля­ют­ся на­зна­че­ни­ем ЛА и предъ­яв­лен­ны­ми к не­му тре­бо­ва­ния­ми. Фор­ма про­фи­лей К. бы­ва­ет: плос­ко-вы­пук­лая – при­ме­ня­ет­ся на пла­нё­рах, ма­ло­ско­ро­ст­ных са­мо­лё­тах; двоя­ко­вы­пук­лая не­сим­мет­рич­ная – на совр. са­мо­лё­тах разл. на­зна­че­ния; сим­мет­рич­ная – на сверх­зву­ко­вых са­мо­лё­тах и опе­ре­нии ЛА; S-об­раз­ная (без­мо­мент­ная) – на са­мо­лё­тах ти­па «бес­хво­ст­ка»; ром­бо­вид­ная и кли­но­вид­ная – на са­мо­лё­тах с боль­ши­ми сверх­зву­ко­вы­ми и ги­пер­зву­ко­вы­ми ско­ро­стя­ми; су­пер­кри­ти­че­ская – на ма­ги­ст­раль­ных пас­са­жир­ских са­мо­лё­тах для дос­ти­же­ния вы­со­ких доз­ву­ко­вых ско­ро­стей по­лё­та (900–950 км/ч). Раз­ли­ча­ют К. пря­мое, тра­пе­цие­вид­ное, треу­голь­ное, пря­мой и об­рат­ной стре­ло­вид­но­сти, а также из­ме­няе­мой в по­лё­те гео­мет­рии (стре­ло­вид­но­сти) (рис. 3). Пе­ре­чис­лен­ные внеш­ние фор­мы и гео­мет­рич. па­ра­мет­ры К. вме­сте с от­но­сит. тол­щи­ной про­фи­ля (от­но­ше­ние макс. тол­щи­ны про­фи­ля к хор­де), фор­мой про­фи­ля и зна­че­ни­ем по­пе­реч­но­го $V$ оп­ре­де­ля­ют аэ­ро­ди­на­мич. ха­рак­те­ри­сти­ки К. и ЛА в це­лом и су­ще­ст­вен­но влия­ют на их лёт­но-так­ти­че­ские, ве­со­вые и жё­ст­ко­ст­ные ха­рак­те­ри­сти­ки.

В по­лё­те на К. дей­ст­ву­ют рас­пре­де­лён­ные аэ­ро­ди­на­мич. си­лы, при­ло­жен­ные не­по­сред­ст­вен­но к об­шив­ке, мас­со­вые си­лы кон­ст­рук­ции, рас­пре­де­лён­ные по все­му объ­ё­му К., и со­сре­до­то­чен­ные мас­со­вые си­лы от аг­ре­га­тов и гру­зов, при­ло­жен­ные в уз­лах их кре­п­ле­ния к К. Под дей­ст­ви­ем этих на­гру­зок К. в по­лёте из­ги­ба­ет­ся и за­кру­чи­ва­ет­ся. В се­че­ни­ях К. воз­ни­ка­ют по­пе­реч­ная си­ла, из­ги­баю­щий и кру­тя­щий мо­мен­ты, ко­то­рые вы­зы­ва­ют де­фор­ма­ции в си­ло­вых эле­мен­тах кон­ст­рук­ции кры­ла.

Конструкция К. должна обеспечивать статич. прочность, сопротивление уста­лос­ти, отсутствие дивергенции (это осо­бен­но относится к К. с обратной стрело­вид­ностью), реверса органов управ­ле­ния и флат­те­ра. Проч­ность К. оп­ре­де­ля­ет­ся в осн. проч­ностью его си­ло­вых эле­мен­тов. Кон­ст­рук­тив­но раз­ли­ча­ют лон­же­рон­ные и кес­сон­ные К. В лон­же­рон­ном К. пре­об­ла­даю­щая часть из­ги­баю­ще­го мо­мен­та пе­ре­да­ёт­ся лон­же­ро­на­ми, в кес­сон­ном К. – па­не­ля­ми. Кес­сон­ные К. наи­бо­лее пол­но от­ве­ча­ют совр. тре­бо­ва­ни­ям. Они бо­лее жё­ст­кие, в них эф­фек­тив­нее ис­поль­зу­ет­ся ма­те­риал кон­ст­рук­ции (он бо­лее рав­но­мер­но рас­пре­де­ля­ет­ся по все­му се­че­нию). ЛА с кес­сон­ны­ми К. при по­лу­че­нии бое­вых по­вре­ж­де­ний бо­лее жи­ву­чи. Так­же кес­сон­ные К. боль­ших пас­са­жир­ских и гру­зо­вых са­мо­лё­тов, как пра­ви­ло, зна­чи­тель­но лег­че лон­же­рон­ных крыль­ев.

В К. при­ме­ня­ют­ся поч­ти все кон­ст­рук­ци­он­ные авиац. ма­те­риа­лы, в т. ч. ком­по­зиц. ма­те­риа­лы, ис­поль­зо­ва­ние ко­то­рых умень­ша­ет мас­су кон­ст­рук­ции и уве­ли­чи­ва­ет её жё­ст­кость.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий